Головной мозг самый главный орган, под его контролем находятся все функции в организме человека. Трудно представить как это возможно. Обоняние, зрение, вкусовые рецепторы, слух и многие другие функции под управление органа весом около 1,5 кг.
С развитием современной фармакологии люди привыкли по первым симптомам покупать ту или иную таблетку и заниматься самолечением. К счастью ситуация в нашей стране меняется и теперь не каждый препарат можно купить в аптеке без рецепта, что побуждает граждан обращаться за квалифицированной помощью к врачу. Так вот, чтобы знать свой организм и понимать, что с ним происходит и когда необходимо бежать к врачу, написана эта статья. Речь пойдет о затылочной доле головного мозга.
Работа лобных долей головного мозга. Лобная доля: функции, структура и повреждение
Лобные доли занимают около 28% всей площади корковых структур. Их масса составляет приблизительно половину веса всего мозга – около 450 г.
Лобные доли – находящиеся во фронтальной плоскости головного мозга структуры, которые отвечают за психическую деятельность человека, что предопределяет их важнейшую роль в формировании и использовании разума.
Функции лобных долей, находящихся в головном мозге, включают способность размышлять, анализировать, абстрагироваться и обобщать.
Теменные
Для того чтобы разобраться в функциях теменных долей, важно понять, что доминирующая и не доминирующая сторона будут выполнять разную работу. Доминирующая теменная доля головного мозга помогает осознать устройство целого через его части, их структуру, порядок
Благодаря ей, мы умеем складывать отдельные части в целое. Очень показательным в этом есть умение читать. Чтобы прочесть слово, нужно сложить буквы в одно целое, а из слов необходимо составить фразу. Так же проводятся манипуляции с числами
Доминирующая теменная доля головного мозга помогает осознать устройство целого через его части, их структуру, порядок. Благодаря ей, мы умеем складывать отдельные части в целое. Очень показательным в этом есть умение читать. Чтобы прочесть слово, нужно сложить буквы в одно целое, а из слов необходимо составить фразу. Так же проводятся манипуляции с числами.
Теменная доля помогает связать отдельные движения в полноценное действие. При расстройстве данной функции наблюдается апраксия. Больные не могут выполнить элементарные действия, например, не способны одеться. Это бывает при болезни Альцгеймера. Человек просто забывает, как делать нужные движения.
Недоминантная сторона (у правшей она правая) комбинирует информацию, которая поступает из затылочных долей, позволяет в трехмерном режиме воспринимать окружающий мир. Если недоминантная теменная доля нарушается, может появиться зрительная агнозия, при которой человек не способен распознать предметы, пейзаж и даже лица.
Теменные доли принимают участие в восприятии боли, холода, тепла. Также их функционирование обеспечивает ориентацию в пространстве.
мозг
мозг человека — орган массой 1,3-1,4 кг, расположенный внутри черепной коробки. Мозг человека состоит из более ста миллиардов клеток-нейронов, образующих серое вещество или кору мозга — его обширный внешний слой.
Отростки нейронов (нечто вроде проводов) — это аксоны, из которых состоит белое вещество мозга. Аксоны связывают нейроны друг с другом через дендриты.
Мозг взрослого человека потребляет около 20% всей энергии, которая необходима организму, в кто время как детский мозг потребляет около 50%.
- Как мозг человека обрабатывает информацию?
- Функции правого и левого полушария мозга
- Эмоции
- Строение мозга человека триединство мозга
- белое и серое вещество
- префронтальная кора
- гиппокамп
- островок Рейля
- зона Брока
Система поощрения мозга Различие мозга у мужчин и женщин Старение мозга человека Источники
Как мозг человека обрабатывает информацию?
Сегодня считается доказанным, что человеческий мозг одновременно может обрабатывать в среднем около 7 бит информации. Это могут быть отдельные звуки или визуальные сигналы, различаемые сознанием оттенки эмоций или мыслей.
Минимальное время, необходимое для того, чтобы отличить один сигнал от другого составляет 1/18 секунды. Таким образом, предел восприятия составляет 126 бит в секунду. Условно, можно посчитать, что в течение жизни 70 лет человек обрабатывает 185 млрд бит информации, включая каждую мысль, воспоминание, действие.
Информация записывается в мозг посредством формирования нервных сетей (своего рода маршрутов).
ОСНОВНЫЕ ЧАСТИ МОЗГА
Если взглянуть на изображение головного мозга, можно заметить: он состоит из нескольких частей, испещренных извилистыми канавками.
В головном мозге человека ученые выделяют три основные части: задний мозг, средний мозг и передний мозг. Они хорошо просматриваются уже у четырехнедельного эмбриона в виде «мозговых пузырьков». Задний и средний мозг отвечают за жизненно важные внутренние функции организма: поддержание тока крови, дыхание. За формы коммуникации с внешним миром отвечает передний мозг.
Мозг физически разделен на два полушария: левое и правое. Функции, которые выполняет орган, тоже разделены по полушариям. Несмотря на их внешнее сходство и активное взаимодействие, в работе полушарий четко прослеживаются функциональные различия. С одними функциями лучше справляется правое полушарие, с другими — левое.
РЕКОРД IQ
Корейский вундеркинд Ким Ун Ён имеет самый высокий в мире IQ — 210. К восьми месяцам он освоил алгебру, а к двум годам говорил на четырех языках. В четыре года Ким поступил в университет и закончил его в 15.
Функции распределены не только между полушариями, но и по разным зонам мозга. В коре головного мозга можно выделить четыре парные доли: затылочную, теменную, височную и лобную.
- Лобные доли можно условно назвать командным пунктом головного мозга. Здесь находятся центры, обеспечивающие самостоятельность и инициативность человека, а также его способность к критической самооценке. Лобные доли отвечают и за освоение навыков. Именно благодаря им изначально сложная работа становится автоматической и не требует особых усилий.
- Височные доли в верхних отделах обрабатывают слуховые ощущения, превращая их в образы. Именно в этой части мозга производится распознавание и наполнение смыслом обращаемых к человеку слов, а также подбор слов для выражения своих мыслей. Передние и средние отделы височных долей связаны с обонянием. Именно височные доли хранят воспоминания. Доминантная височная доля имеет дело с вербальной памятью и названиями объектов, недоминантная — со зрительной памятью.
- Теменные доли отвечают за умение складывать части в целое. Например, для чтения необходимо уметь складывать буквы в слова и слова во фразы. То же с цифрами и числами. Эта часть мозга также отвечает за ощущение своего тела и различение его правой и левой сторон. Теменные доли — это центр трехмерного изображения. Он обеспечивает трехмерное восприятие окружающего мира. Эта сторона также участвует в пространственной ориентации, восприятии тепла, холода и боли.
- Затылочные доли отвечают за переработку зрительной информации. Все, что мы видим, мы видим не глазами, которые лишь фиксируют свет и переводят его в электрические импульсы. Мы «видим» затылочными долями, которые интерпретируют поступающие от глаз сигналы.
Функции лобной доли головного мозга
Мозг представляет собой сложный орган с миллиардами клеток, называемых нейронами, которые работают вместе. Лобная доля работает наряду с другими областями головного мозга и контролирует функции мозга в целом. Формирование памяти, например, зависит от многих областей головного мозга.
Более того, мозг может «восстанавливать» себя, чтобы компенсировать повреждения. Это не означает, что лобная доля может оправиться от всех травм, но и другие области мозга могут изменяться в ответ на травму головы.
Лобные доли играют ключевую роль в будущем планировании, в том числе самоуправлении и принятии решений. Некоторые функции лобной доли включают в себя:
Речь: зона Брока — область в лобной доле, которая помогает выразить словами мысли. Повреждение этой области влияет на способность говорить и понимать речь.
Моторика: кора лобной доли помогает координировать произвольные движения, в то числе ходьбу и бег.
Сравнение объектов: лобная доля помогает классифицировать объекты и сравнивать их.
От редакции : Особенности геморрагического инсульта
Формирование памяти: практически каждая область головного мозга играет важную роль в памяти, так что лобная доля не является уникальной, но она играет ключевую роль в формировании долгосрочных воспоминаний.
Формирование личности: сложное взаимодействие импульсного управления, памяти и других задач помогает сформировать основные характеристики человека. Повреждение лобной доли может радикально изменить личность.
Вознаграждение и мотивация: большинство дофамин- чувствительных нейронов мозга, находятся в лобной доле
Дофамин является химическим веществом мозга, которое помогает поддерживать чувство вознаграждения и мотивации.
Управление вниманием, в том числе селективным вниманием: когда лобные доли не могут управлять вниманием, то может развиться синдром дефицита внимания и гиперактивности (СДВГ).
Алалия — органическое нарушение (недоразвитие) речи центрального характера. При алалии происходит запаздывание созревания нервных клеток в определенных областях коры головного мозга. Нервные клетки прекращают свое развитие, оставаясь на молодой незрелой стадии — нейробластов. Это недоразвитие мозга может быть врожденным или рано приобретенным в доречевом периоде — органические повреждения мозга при алалии имели место в пренатальном или раннем постнатальном периоде. Условно доречевым периодом считаются первые три года жизни ребенка, когда идет интенсивное формирование клеток коры головного мозга и когда стаж пользования ребенком речью еще очень мал. Развитие мозговых систем, наиболее важных для речевой функции, не заканчивается во внутриутробном периоде, а продолжается после рождения ребенка.
Недоразвитие мозга или его раннее поражение приводит к понижению возбудимости нервных клеток и к изменению подвижности основных нервных процессов, что влечет за собой снижение работоспособности клеток коры головного мозга.
Изучение патофизиологических механизмов, лежащих в основе алалии, обнаруживает широкую иррадиацию процессов возбуждения и торможения, инертность основных нервных процессов, повышенную функциональную истощаемость клеток коры головного мозга (И. К. Самойлова, 1952). Исследователи отмечают недостаточность пространственной концентрации возбудительного и тормозного процессов в коре мозга. Изучение электрической активности мозга у детей с алалией выявило четкие локальные изменения биопотенциалов преимущественно в височно-теменно-затылочных отделах, в лобно-височном и височном ответвлениях доминантного полушария (Л. А. Белогруд, 1971; А. Л. Линденбаум, 1971; Е. М. Мастюкова, 1972).Последние исследования показывают, что при алалии имеют место нерезко выраженные, но множественные повреждения коры головного мозга обоих полушарий, т. е. билатеральные поражения. По-видимому, при односторонних повреждениях мозга речевое развитие осуществляется за счет компенсаторных возможностей здорового, нормально развивающегося и функционирующего полушария. При билатеральных повреждениях компенсация становится невозможной или резко затруднительной. Таким образом, не подтверждается ранее существовавшая точка зрения об узколокальном характере повреждения речевых зон головного мозга (коркового конца речеслухового и речедвигательного анализаторов)».(Волкова Л.С.)
Формы алалии.
Алалия моторная (экспрессивная).«Алалия — это неразвитие или грубое нарушение развития речи у ребенка, возникающее в доречевой период, имеющее системный характер и обусловленное патологией ЦНС определенных зон коры головного мозга….
Обусловленность алалии патологией ЦНС в доречевой период указывает на то, что алалия — следствие каких-либо ранних патологических влияний на головной мозг ребенка. Отнесённость патологии преимущественно к уровню коры свидетельствует о том, что в патологический процесс вовлечены в основном не элементарные, мышечно-двигательные или чувствительные, а высшие отделы ЦНС, тесно связанные с мышлением».
Экспрессивная речь реализуется за счет разных уровней мозга. На гностико-праксическом уровне осуществляется артикуляционный праксис: афферентный (кинестетический) связан с функционированием нижнетеменной (постцентральной) зоны, эфферентный (кинетический) артикуляционный праксис обеспечивается премоторной корой мозгаНа символическом (языковом) уровне мозговые механизмы речи актуальны для фонологической (фонематической) системы языка, а также для лексической и синтаксической системы. В рамках лексической системы языка основным видом речевой деятельности является называние — функция, которая осуществляется преимущественно третичной (височно-затылочной) зоной слева (по Е.П. Кок).
Мозговая организация синтаксической системы языка (фразовой речи) имеет наиболее сложную разноуровневую структуру. На уровне глубинного («ядерного») синтаксиса основную роль играют лобные доли мозга. Ядерная синтаксическая структура фразы — это, по «существу», ее предельно свернутая программа.
Она отличается высокой степенью логичности и, следовательно, близка к мыслительной деятельности в целом.Поверхностная синтаксическая структура фразы представляет собой «разворот» ее ядерной части. Она осуществляется преимущественно за счет задне-лобных отделов левого полушария, где «хранятся» типовые модели фраз, а также за счет теменных долей мозга, ответственных за морфологические языковые операции».(Визель Т.Г.)
Основные направления коррекционной работы:
· Раннее начало коррекционной логопедической работы ( с 2х-2,5 лет) дает наилучшие результаты. Это позволяет избежать появления вторичных симптомов – остановки интеллектуального развития, появления речевого негативизма, психологических наслоений.· Работу с неговорящим ребенком-алаликом следует начать с формирования у ребенка желания пользоваться вербальной речью.
· Основным смыслом логопедической работы при моторной (экспрессивной) алалии является формирование лексической и грамматической стороны речи, научение пользоваться самостоятельной связной речью.· Поскольку механизмом моторной алалии является несформированность или неполноценность различных нейронных связей в КГМ (межполушарных и межанализаторных), набор, расширение и уточнение словаря, освоение всех возможных грамматических моделей русского языка требует очень длительной работы. Рекомендуется использовать комплексный подход, когда с ребенком занимаются специалисты и родители не только речью, но и общей моторикой, развитием невербального интеллекта, развитием зрительного восприятия, сопровождая всю деятельность ребенка речью.* подробнее читайте в языковой концепции
.Алалия сенсорная (импрессивная).
«Импрессивная речь (восприятие речи) осуществляется преимущественно за счет левой височной коры. При этом первичные поля этой области, являясь корковым концом слухового анализатора, обеспечивают (совместно с первичными полями правой височной доли) физический слух. За счет вторичных полей приобретается и используется в дальнейшем функция речевого слухового гнозиса, т.е. способность узнавать (различать) речевые сигналы. Благодаря деятельности коры на уровне третичных полей обеспечивается формирование и дальнейшее пользование фонематической системой языка. Это осуществляется зоной перекрытия височной, теменной и затылочной долей (ТРО). Она ответственна также за понимание сложных логико-грамматических оборотов речи». (Визель Т.Г.)
Основные направления коррекционной работы:
· Коррекционную работу следует начинать максимально рано.· Главной задачей логопедической работы при сенсорной алалии является развитие понимания обращенной речи.· Начинать коррекционную работу следует с ограничения слуховой информации вокруг ребенка (радио, телевизор).
· Первоначальный набор понимаемого словаря осуществляется через знакомство с реальными предметами, действиями.
· Новые слова предъявляются ребенку в неизменной форме. К словоизменению приступают, когда слово хорошо усвоено, таким образом ребенка знакомят с каждой формой слова.· Коррекционную работу с сенсорным алаликом можно строить, опираясь на зрительный анализатор. Поэтому ребенка с сенсорной алалией как можно раньше начинают обучать глобальному чтению и развитию фразовой речи с помощью схем.
· Следует обратить внимание на развитие фонематического слуха (восприятия, анализа, внимания), развитие мышления, памяти, восприятия, внимания через сохранные анализаторы.
Литература
- Collins A., Koechlin E. Reasoning, learning, and creativity: frontal lobe function and human decision-making //PLoS biology. – 2012. – Т. 10. – №. 3. – С. e1001293.
- Chayer C., Freedman M. Frontal lobe functions //Current neurology and neuroscience reports. – 2001. – Т. 1. – №. 6. – С. 547-552.
- Kayser A. S. et al. Dopamine, corticostriatal connectivity, and intertemporal choice //Journal of Neuroscience. – 2012. – Т. 32. – №. 27. – С. 9402-9409.
- Panagiotaropoulos T. I. et al. Neuronal discharges and gamma oscillations explicitly reflect visual consciousness in the lateral prefrontal cortex //Neuron. – 2012. – Т. 74. – №. 5. – С. 924-935.
- Zelikowsky M. et al. Prefrontal microcircuit underlies contextual learning after hippocampal loss //Proceedings of the National Academy of Sciences. – 2013. – Т. 110. – №. 24. – С. 9938-9943.
- Flinker A. et al. Redefining the role of Broca’s area in speech //Proceedings of the National Academy of Sciences. – 2015. – Т. 112. – №. 9. – С. 2871-2875.
Цереброспинальная жидкость
Цереброспинальная жидкость – это прозрачная жидкость, окружающая мозг. Объем жидкости составляет 100-160 мл, состав похож на плазму крови, из которой она возникает. Однако цереброспинальная жидкость содержит больше ионов натрия и хлорида, меньше белков. В камерах содержится лишь небольшая часть (около 20%), наибольший процент находится в субарахноидальном пространстве.
Функции
Цереброспинальная жидкость формирует жидкую оболочку, облегчает структуры ЦНС (уменьшает массу ГМ до 97%), защищает от повреждений собственным весом, шока, питает мозг, удаляет отходы нервных клеток, помогает передавать химические сигналы между различными частями ЦНС.
Строение коры головного мозга
Описываемый отдел – самый крупный, он составляет до 80% всей массы представленного органа. Кора головного мозга представляет собой слой серого вещества, располагающийся на поверхности и периферии больших полушарий. Она отвечает за высшую нервную деятельность и большинство психических процессов. Весь отдел классифицируется на 5 видов долей. Каждая из них имеет собственные функции.
Лобные доли
Передняя часть коры отделена от теменной и височной двумя бороздами (центральной и латеральной). Лобные доли головного мозга состоят из нескольких основных извилин:
- предцентральная;
- верхняя лобная;
- средняя лобная;
- нижняя лобная.
Последняя извилина делится мелкими ветвями латеральной борозды на 3 части:
- оперкулярную;
- треугольную;
- орбитальную.
За что отвечают доли мозга в лобной зоне:
- мотивация;
- тормозные рефлексы;
- целенаправленное (осознанное) поведение;
- планирование;
- исполнение поставленных задач;
- способность писать;
- речь;
- точность движений.
Височные доли
Боковые зоны обладают самыми выраженными и четкими границами. Строение головного мозга в представленных долях отделяет их латеральной и двумя длинными височными бороздами (верхней и нижней). Некоторые участки «изрезаны» короткими поперечными ветвями. Височные доли мозга делятся на 3 основные извилины:
- нижняя;
- средняя;
- верхняя.
Функции этого участка коры:
- слух;
- зрительная память;
- восприятие речи;
- формирование эмоций;
- вербальная память;
- сознание;
- восприятие и сочинение музыки;
- обработка зрительной информации.
Теменные доли
Представленная область располагается вверху мозга, ближе к его задней части. Она отделена от других участков центральной и теменно-затылочной бороздой. Главной задачей рассматриваемой части коры является анализ окружающего пространства. Теменные доли головного мозга делятся на несколько областей, каждая из которых обладает специфической функциональностью:
- Первичная соматосенсорная кора.
Отвечает за восприятие и анализ тактильных ощущений. Она помогает правильно распознавать предметы, извлекать из памяти знания об их структуре, массе и форме. - Заднебоковые отделы теменных долей.
Формируют визуально-пространственные соотношения и объединяют их с другими характеристиками объектов. Данная зона обеспечивает корректное восприятие положения и траекторий перемещения своего тела и конечностей, окружающих предметов. - Среднетеменная доля в доминантном полушарии.
Функции – математические способности, письмо, понимание разницы между левой и правой стороной, узнавание пальцев. - Субдоминантная теменная доля.
Регулирует осознание собственного тела и его частей, взаимосвязь объектов в пространстве, способность объединять кусочки в целые композиции, выполнение простых механических задач (одевание, расчесывание и других).
От редакции : Насколько у вас развитый социальный интеллект
Затылочные доли
Это образование коры локализуется у основания черепа, отделено латеральными бороздами. Задачи, которые выполняют затылочные доли мозга, и их функции, определены нервными пучками в их строении. В описываемой области сосредоточены структуры, отвечающие за зрение. Строение коры головного мозга затылочных долей включает 2 участка:
- зона визуальных ассоциаций;
- первичная зрительная кора.
Базовые функции:
- регуляция движений глаз;
- получение визуальной информации, ее обработка;
- анализ изображений;
- способность отличать предметы друг от друга визуально;
- объективное восприятие реальности.
Островковая доля
Описываемая часть коры расположена в глубине латеральной борозды. Пока это самая неизученная область в плане выполняемых функций. Предположительно островковая доля головного мозга отвечает за:
- формирование сознания;
- возникновение эмоций;
- поддержку гомеостаза;
- обработку любой сенсорной информации и ее объединение, анализ (визуальной, тактильной, аудио);
- контроль моторики;
- эмпатию;
- речь;
- восприятие тепла, холода, насыщения, полноты мочевого пузыря;
- ощущение одышки;
- равновесие;
- рефлекторные реакции (смех, плач);
- обучение движениям;
- социальные эмоции (отвращение, нормы поведения и другие);
- оргазм.
Функции затылочной доли головного мозга
Затылочная доля отвечает за зрительное восприятие информации, ее оперативное хранение. И вообще все, что проецируется сетчаткой глаза, все распознается и складывается в определенную картинку именно в затылочной доле. У абсолютно здоровых людей эта доля работает самостоятельно и безупречно, однако при травмах и некоторых заболеваниях могут происходить непоправимые последствия. Иногда, полная слепота.
Раздражающие сетчатку глаза световые сигналы, посредством нервных окончаний передают информацию в затылочную долю. Затем нервы передают информацию в промежуточный мозг, еще один сектор мозга. А он в свою очередь отправляет информацию в первичную зрительную кору, ее называют сенсорной. Из первичной сенсорной коры нервные сигналы направляются в соседние области и называются они сенсорной ассоциативной корой. Основная функция затылочной доли является отправка сигналов из первичной зрительной коры в зрительную ассоциативную кору. Описанные области вместе анализируют воспринятую зрительную информацию и сохраняют в памяти зрительные воспоминания.
Травмы затылка, а именно затылочной доли ведет к серьезным последствиям. Таким как слепота, потеря восприятия.
Такое происходит при повреждении первичной зрительной коры, на поверхности которой находится поле зрения. Полное повреждение первичной коры происходит в трех случаях, при травме затылка, при развитии опухоли на поверхности головного мозга, очень редко при врожденных аномалиях.
Однако очаговые поражения не ведут к полной потери зрения. Например, взяв в руки знакомый предмет, человек может сказать, что он трогает, но если этот, же предмет будет изображен на картинке, то описав его форму, цвет он не скажет что это. Медицинским языком это называется визуальная агнозия.
Иногда очаговые поражения удается локализовать и вернуть зрение и восприятие. Но стоит отметить, что шансов на частичное выздоровление у детей больше чем у тех людей, чей мозг уже сформирован и не растет. Лечение, как правило, проходит хирургическим путем.
Функции
Кроме физиологического разделения мозга на доли, возникла необходимость распределения на области, на которые положены те или иные функции.
Лобные доли
Это так называемый командный центр. За что отвечает лобная доля? Она является пунктом самостоятельности, самоосознания, проявления инициативы. Поражение этих областей или наличие патологий в их функционировании отразится на отношении человека к миру – ему почти всё станет безразличным, исчезнет мотивация, пропадёт интерес к происходящим событиям, проявится лень.
Основные функции лобных долей – управление поведением человека. Она генерирует ответные действия на социальные явления. При нарушении зон деактивируется ограничитель, устанавливающий запрет на определённые действия, называемые некультурными.
Лобные доли также позволяют анализировать, планировать и получать новые навыки. Многократное повторение одних и тех же последовательностей движений со временем становится автоматизмом и не требует приложения усилий и обдумывания для их выполнения. Повреждения заставят повторять монотонные движения каждый раз как впервые, прилагая к этому множество усилий.
Персеверация – ещё одно последствие отклонения в работе лобных долей. Это зацикливание или повторение, например, повторение одной фразы или слова во время разговора
В левой части (для правши) размещены центры, которые отвечают за речь и внимание
Также эти области мозга задействованы при координации и удержании тела в вертикальном положении при сидении и ходьбе.
Височные
Располагаются по бокам в верхней части мозга, в области висков. Благодаря им звук, воспринимаемый звуковыми рецепторами, превращается в образы, человек понимает то, что услышал, определённые звуковые колебания связываются с образами и закрепляются за ними. С помощью этой части мозга люди понимают друг друга, их звуковые вибрации наполняются смыслом, они выбирают необходимые слова для описания тех или иных явлений.
Обычно левая, не доминантная доля, учувствует в определении интонации речи и считывает эмоции по одной лишь мимике. Благодаря небольшому образованию – гиппокампу осуществляется доступ к долговременной памяти. Уж где находится, на каком носителе и коим образом записываются наши воспоминания, это следует узнать. Не доминантная часть задействуется в зрительной памяти, а доминантная – в вербальной.
При проблемах с височными долями появляются отклонения в функционировании речевого аппарата, в частности афазия.
Теменные
МРТ показало, что для левши и правши эти доли выполняют различные функции, фактически прямо противоположные.
Левая дарит нам способности создавать целое из фрагментов, то есть помогает формировать целостную картину мира из небольших, на первый взгляд не связанных один с другим, кусочков.
Они позволяют не только из фрагментов мозаику складывать, но и из букв – слова, из последовательности действий – танец или приём и т. д.
Не доминантная часть позволяет воспринимать мир трехмерным, путём обработки поступающей из затылочных долей информации. Ввиду нарушений человек теряет способность распознания лиц, очертания предметов, определения расстояния до них, между ними. Ещё эти области задействуются в восприятии боли и холода.
Затылочные
Центр обработки визуальной информации. Они интерпретируют поступающие на световой биологический сенсор – сетчатку глаза – фотоны, отраженные от преград, и формируют полученное изображение, поворачивая его на 180 градусов. Данные о размерах, цвете, форме, материале предмета обрабатываются в отдельных центрах, а затем воссоединяются для образования единой трехмерной картины.
От редакции : Виды парезов лицевого нерва
МЕТОДЫ ИЗУЧЕНИЯ ФУНКЦИЙ КОРЫ ГОЛОВНОГО МОЗГА
Значительное количество методов применяется в физиологии для изучения деятельности коры головного мозга. Некоторые методы можно применять только в так называемых острых опытах, когда животное находится под наркозом и после опытов погибает; другие методы дают возможность вести изучение в течение длительного времени. Для изучения функций такого сложного органа, как кора, наибольшие результаты дают методы, позволяющие вести исследование в течение нескольких месяцев и даже лет.
Рис. 2 СХЕМА ХОДА НЕРВНЫХ ВОЛОКОН В БОЛЬШИХ ПОЛУШАРИЯХ ГОЛОВНОГО МОЗГА. 1 — короткие ассоциативные волокна; 2 — длинные ассоциативные волокна; 3 — комиссуральные волокна осуществляющие связь между обоими полушариями мезга; 4 — центробежные волокна
Ознакомимся с некоторыми методами исследования деятельности коры больших полушарий головного мозга.
Удаление отдельных участков коры.
Суть метода заключается в том, что оперативным путем у животного удаляют те или иные участки коры. После заживления раны, когда животное поправится, наблюдают изменения, которые произошли в поведении животного. На основе наступающих при этом нарушений делают вывод о функциях удаленного участка коры.
Метод электрического раздражения
Этот метод дает возможность после вскрытия черепа у подопытного животного или у человека во время операции на мозге наносить электрические раздражения различных точек коры. Таким образом, можно установить двигательную зону коры и изучить отдельные ее участки, раздражение которых вызывает сокращение тех или иных определенных групп мышц. При исследовании функций коры у человека этот метод оказался продуктивным, так как человек при раздражении коры способен отвечать и сообщать исследователю те ощущения, которые он испытывает.
Метод химического раздражения
Для нанесения химического раздражения коре больших полушарий применяют некоторые яды, чаще всего стрихнин.
Для изучения коры было использовано свойство стрихнина резко повышать возбудимость нервной системы. Небольшой кусок фильтровальной бумаги смачивают раствором стрихнина и прикладывают к исследуемому участку коры. Возбудимость участка коры, к которому приложен стрихнин, резко повышается, что отражается на реакциях животного. Изучая эти изменения и зная, куда приложена бумажка, смоченная раствором стрихнина, составляют представление о функциях этого участка.
Изучение токов действия мозга
Изучение электрических явлений в головном мозгу впервые началось в нашей стране.
Намного раньше иностранных авторов эти исследования были проведены В. Я. Данилевским, И. М. Сеченовым, Н. Е. Введенским, Б. Ф. Вериго, В. В. Правдич-Неминским. В 1877 г. В. Я. Данилевский впервые опубликовал свои исследования, которые показали наличие ритмических электрических колебаний в головном мозгу. Он установил наличие связи между деятельностью мозга и наблюдаемыми им электрическими колебаниями. Вскоре после работы В. Я. Данилевского И. М. Сеченов в 1882 г., изучая электрические явления в продолговатом мозгу, установил ритмический характер этих явлений и сделал ряд других наблюдений.
В 1884 г. Н. Е. Введенский, применяя к коре мозга разработанную им методику выслушивания в телефонную трубку электрических токов мышцы, уловил ритмический характер электрических явлений.
Современный метод электроэнцефалографии, т. е. записи биотоков мозга, позволяет, прикладывая во время опыта специальные электроды к коре мозга или к. коже головы, отвести токи действия коры и их записать. Запись токов действия мозга называется энцефалограммой. Запись токов действия во время работы и в покое, во время сна и при разных других видах деятельности, а также дальнейшее их сравнение дают возможность сделать определенные заключения. На рис. 125 приведена электроэнцефалограмма человека во время покоя и работы.
Нейрокинезиология
Кора головного мозга
Admin
06.01.2019
Без рубрики
Кора больших полушарий головного мозга
или
кора головного мозга
(лат.
cortex cerebri
) — структура головного мозга, слой серого вещества толщиной 1,3- 4,5 мм, расположенный по периферии полушарий большого мозга, и покрывающий их. Наибольшая толщина отмечается в верхних участках предцентральной, постцентральной извилин и парацентральной дольки.
Кора головного мозга играет очень важную роль в осуществлении высшей нервной (психической)
деятельности.
У человека кора составляет в среднем 44% от объёма всего полушария в целом.
Площадь поверхности коры одного полушария у взрослого человека в среднем равна 220 000 мм². На поверхностные части приходится 1/3, на залегающие в глубине между извилинами — 2/3 всей площади коры.
Величина и форма борозд подвержены значительным индивидуальным колебаниям — не только мозг
различных людей, но даже полушария одной и той же особи по рисунку борозд не вполне похожи.
Всю кору полушарий принято разделять на 4 типа: древняя (палеокортекс), старая (архикортекс), новая (неокортекс) и межуточная кора.
Анатомия Кора большого мозга покрывает поверхность полушарий и образует большое количество различных по глубине и протяжённости борозд (лат. sulci cerebri). Между бороздами расположены различной величины извилины большого мозга (лат. gyri cerebri).
В каждом полушарии различают следующие поверхности:
выпуклую верхнелатеральную поверхность (лат. facies superolateralis), примыкающую к внутренней поверхности костей свода черепа нижнюю поверхность (лат. facies inferior), передние и средние отделы которой располагаются на внутренней поверхности основания черепа, в области передней и средней черепных ямок, а задние — на намёте мозжечка медиальную поверхность (лат. facies medialis), направленную к продольной щели мозга. Эти три поверхности каждого полушария, переходя одна в другую, образуют три края. Верхний край (лат. margo superior) разделяет верхнелатеральную и медиальную поверхности. Нижнелатеральный край (лат. margo inferolateralis) отделяет верхнелатеральную поверхность от нижней. Нижнемедиальный край (лат. margo inferomedialis) располагается между нижней и медиальной поверхностями.
В каждом полушарии различают наиболее выступающие места: спереди — лобный полюс (лат. polus frontalis), сзади — затылочный (лат. polus occipitalis), и сбоку — височный (лат. polus temporalis).
Полушарие разделено на пять долей. Четыре из них примыкают к соответствующим костям свода черепа:
Lobes of the brain rus.svg
лобная доля (лат. lobus frontalis) теменная доля (лат. lobus parietalis) затылочная доля (лат. lobus occipitalis) височная доля (лат. lobus temporalis) Пятая — островковая доля (лат. lobus insularis) (островок) (лат. insula) — заложена в глубине латеральной ямки большого мозга (лат. fossa lateralis cerebri), отделяющей лобную долю от височной.
Борозды и извилины верхнелатеральной поверхности Лобная доля — обозначена синим. Теменная доля — обозначена желтым. Височная доля — обозначена зелёным. Затылочная доля — обозначена розовым.
Лобная доля Лобную долю от теменной отделяет глубокая центральная борозда (лат. sulcus centralis). Она начинается на медиальной поверхности полушария, переходит на его верхнелатеральную поверхность, идёт по ней немного косо, сзади наперёд, и обычно не доходит до латеральной борозды мозга.
Приблизительно параллельно центральной борозде располагается предцентральная борозда (лат. sulcus precentralis), которая не доходит до верхнего края полушария. Предцентральная борозда окаймляет спереди прецентральную извилину (лат. gyrus precentralis).
Верхняя и нижняя лобные борозды (лат. sulci frontales superior et inferior) направляются от предцентральной борозды вперёд. Они делят лобную долю на:
верхнюю лобную извилину (лат. gyrus frontalis superior), которая расположена выше верхней лобной борозды и переходит на медиальную поверхность полушария среднюю лобную извилину (лат. gyrus frontalis medius), которую ограничивают верхняя и нижняя лобные борозды. Орбитальный (передний) сегмент этой извилины переходит на нижнюю поверхность лобной доли нижнюю лобную извилину (лат. gyrus frontalis inferior), которая лежит между нижней лобной бороздой и латеральной бороздой мозга и ветвями латеральной борозды делится на ряд частей. Латеральная борозда (лат. sulcus lateralis) — одна из наиболее глубоких борозд головного мозга. Она отделяет височную долю от лобной и теменной. Залегает латеральная борозда на верхнелатеральной поверхности каждого полушария и идёт сверху вниз и кпереди. В глубине этой борозды располагается углубление — латеральная ямка большого мозга (лат. fossa lateralis cerebri), дном которой является наружная поверхность островка.
От латеральной борозды к верху отходят мелкие борозды, называемые ветвями. Наиболее постоянными из них являются восходящая (лат. ramus ascendens) и передняя (лат. ramus anterior) ветви. Верхнезадний отдел борозды называется задней ветвью (лат. ramus posterior).
Нижняя лобная извилина, в пределах которой проходят восходящая и передняя ветви, разделяется ими на три части:
заднюю — покрышечную часть (лат. pars opercularis), ограниченную спереди восходящей ветвью среднюю — треугольную часть (лат. pars triangularis), лежащую между восходящей и передней ветвями переднюю — глазничную часть (лат. pars orbitalis), расположенные между передней ветвью и нижнелатеральным краем лобной доли Теменная доля Залегает cзади от центральной борозды, которая отделяет её от лобной. От височной отграничена латеральной бороздой мозга, от затылочной — частью теменно-затылочной борозды (лат. sulcus parietooccipitalis).
Параллельно прецентральной извилине проходит постцентральная (лат. gyrus postcentralis). От неё кзади, почти параллельно продольной щели большого мозга, идёт внутритеменная борозда (лат. sulcus intraparietalis), делящая задневерхние отделы теменные отделы теменной доли на две извилины: верхнюю (лат. lobulus parietalis superior) и нижнюю (лат. lobulus parietalis inferior) теменные дольки. В нижней теменной дольке различают две сравнительно небольшие извилины: надкраевую (лат. gyrus supramarginalis), лежащую кпереди и замыкающую задние отделы латеральной борозды, и расположенную кзади от предыдущей угловую (лат. gyrus angularis), которая замыкает верхнюю височную борозду.
Между восходящей и задней ветвями латеральной борозды мозга расположен участок коры, обозначаемый как лобно-теменная покрышка (лат. operculum frontoparietalis). В неё входят задняя часть нижней лобной извилины, нижние отделы предцентральной и постцентральной извилин, а также нижний отдел передней части теменной доли.
Затылочная доля На верхнелатеральной поверхности не имеет границ, отделяющих её от теменной и височной долей, за исключением верхнего отдела теменно-затылочной борозды, которая располагается на медиальной поверхности полушария и отделяет затылочную долю от теменной.
Наиболее крупная из борозд — поперечная затылочная борозда (лат. sulcus occipitalis transversus). Иногда она является продолжением кзади внутритеменной борозды и в заднем отделе переходит в непостоянную полулунную борозду (лат. sulcus lunatus).
Височная доля Имеет наиболее выраженные границы. В ней различают выпуклую латеральную поверхность и вогнутую нижнюю. Тупой полюс височной доли обращён вперёд и несколько вниз. Латеральная борозда большого мозга резко отграничивает височную долю от лобной.
Две борозды, расположенные на верхнелатеральной поверхности: верхняя (лат. sulcus temporalis superior) и нижняя (лат. sulcus temporalis inferior) височные борозды, следуя почти параллельно латеральной борозде мозга, разделяют долю на три височные извилины: верхнюю, среднюю и нижнюю (лат. gyri temporales superior, medius et inferior).
Те участки височной доли, которые направлены в сторону латеральной борозды мозга изрезаны короткими поперечными височными бороздами (лат. sulci temporales transversi). Между этими бороздами залегают 2-3 короткие поперечные височные извилины, связанные с извилинами височной доли (лат. gyri temporales transversi) и островком.
Островковая доля (островок) Залегает на дне латеральной ямки большого мозга (лат. fossa lateralis cerebri).
Она представляет собой трёхстороннюю пирамиду, обращённую своей вершиной — полюсом островка — кпереди и кнаружи, в сторону латеральной борозды. С периферии островок окружён лобной, теменной и височной долями, участвующими в образовании стенок латеральной борозды мозга.
Основание островка с трёх сторон окружено круговой бороздой островка (лат. sulcus circularis insulae).
Его поверхность прорезана глубокой центральной бороздой островка (лат. sulcus centralis insulae). Эта борозда разделяет островок на переднюю и заднюю части.
На поверхности различают большое количество мелких извилин островка (лат. gyri insulae). Большая передняя часть состоит из нескольких коротких извилин островка (лат. gyri breves insulae), задняя — одной длинной извилины (лат. gyrus longus insulae).
Борозды и извилины медиальной поверхности На медиальную поверхность полушария выходят лобная, теменная и затылочная доли.
Поясная извилина (лат. gyrus cinguli) начинается подмозолистым полем (лат. area subcallosa), огибает мозолистое тело и при посредстве узкой полоски — перешейка поясной извилины (лат. isthmus gyri cinguli) переходит в парагиппокампальную извилину на нижней поверхности полушария.
Борозда мозолистого тела (лат. gyrus corporis callosi) отделяет поясную извилину от мозолистого тела и на нижней поверхности полушария продолжается в борозду гиппокампа.
Поясная извилина ограничена сверху поясной бороздой (лат. sulcus cinguli). В последней различают выпуклую по направлению к лобному полюсу переднюю часть и заднюю часть, которая, следуя вдоль поясной извилины и не доходя до её заднего отдела, поднимается к верхнему краю полушария большого мозга. Задний конец борозды лежит позади верхнего конца центральной борозды. Между предцентральной бороздой, окончание которой иногда хорошо видно у верхнего края медиальной поверхности полушария, и концом поясной борозды, располагается парацентральная долька (лат. lobulus paracentralis).
Выше поясной извилины, Спереди от подмозолистого поля, начинается медиальная лобная извилина (лат. gyrus frontalis medialis). Она тянется до парацентральной дольки и является нижней частью верхней лобной извилины.
Сзади от поясной борозды лежит небольшая четырёхугольная долька — предклинье (лат. precuneus). Её задней границей является глубокая теменно-затылочная борозда (лат. sulcus parietooccipitalis), нижней — подтеменная борозда (лат. sulcus subparietalis), отделяющая предклинье от заднего отдела поясной извилины.
Сзади и ниже предклинья залегает треугольная долька — клин (лат. cuneus). Выпуклая наружная поверхность клина участвует в образовании затылочного полюса. Направленная вниз и вперёд вершина клина почти доходит до заднего отдела поясной извилины. Задненижней границей клина является очень глубокая шпорная борозда (лат. sulcus calcarinus), передней — теменно-затылочная борозда.
Борозды и извилины нижней поверхности На нижней поверхности лобной доли располагается обонятельная борозда (лат. sulcus olfactorius). Кнутри от неё, между нею и нижнемедиальным краем полушария, лежит прямая извилина (лат. gyrus rectus). Её задний отдел доходит до переднего продырявленного вещества (лат. substantia perforata anterior). Кнаружи от борозды располагается остальная часть нижней поверхности лобной доли, изрезанная короткими глазничными бороздами (лат. sulci orbitales), на ряд небольших глазничных извилин (лат. gyri orbitales).
Нижняя поверхность височной доли глубокой бороздой гиппокампа (лат. sulcus hippocampi) отделена от ножек мозга. В глубине борозды залегает узкая зубчатая извилина (лат. gyrus dentatus). Передний её конец переходит в крючок, а задний — в ленточную извилину (лат. gyrus fasciolaris) залегающую под валиком мозолистого тела. Латерально от борозды находится парагиппокампальная извилина (лат. gyrus parahippocampalis). Впереди эта извилина имеет утолщение в виде крючка (лат. uncus), а кзади продолжается в язычную извилину (лат. gyrus lingualis). Парагиппокампальную и язычную извилины с латеральной стороны ограничивает коллатеральная борозда (лат. sulcus collateralis), переходящая кпереди в носовую борозду (лат. sulcus rhinalis). Остальную часть нижней поверхности височной доли занимают медиальная и латеральная затылочно-височные извилины (лат. gyri occipitotemporales medialis et lateralis), разделённые затылочно-височной бороздой (лат. sulcus occipitotemporalis). Латеральная затылочно-височная извилина нижнелатеральным краем полушария отделяется от нижней височной извилины.
Гистология Строение Цитоархитектоника (расположение клеток)
молекулярный слой наружный зернистый слой слой пирамидальных нейронов внутренний зернистый слой ганглионарный слой (внутренний пирамидный слой;клетки Беца) слой полиморфных клеток Миелоархитектоника (расположение волокон)
полоска молекулярного слоя полоска наружного зернистого слоя полоска внутреннего зернистого слоя полоска ганглионарного слоя . Кора полушарий головного мозга представлена слоем серого вещества толщиной в среднем около 3 мм (1,3 — 4,5 мм). Наиболее сильно развита она в передней центральной извилине. Обилие борозд и извилин значительно увеличивает площадь серого вещества головного мозга. В коре содержится около 10-14 млрд нервных клеток. Различные её участки, отличающиеся друг от друга некоторыми особенностями расположения и строения клеток (цитоархитектоника), расположения волокон (миелоархитектоника) и функциональным значением, называются полями. Они представляют собой места высшего анализа и синтеза нервных импульсов. Резко очерченные границы между ними отсутствуют. Для коры характерно расположение клеток и волокон слоями.
Типичным для новой коры (лат. neocortex) является наличие шести слоёв, различающихся между собой главным образом по форме входящих в них нервных клеток. При этом на медиальной и нижней поверхностях полушарий сохранились участки старой (лат. archipallium) и древней (лат. paleopallium) коры, имеющей 2-слойное и 3-слойное строение. Также выделяется промежуточная кора (лат. mesopallium) располагающаяся между старой и новой, а также древней и новой корой. Древняя кора представлена гиппокампом, а старая — участком коры возле обонятельной луковицы на нижней поверхности лобной доли.
Цитоархитектоника Мультиполярные нейроны коры головного мозга весьма разнообразны по форме. Среди них можно выделить:
пирамидные звёздчатые веретенообразные паукообразные горизонтальные Пирамидные нейроны составляют основную и наиболее специфическую для коры головного мозга форму (80—90 % всех нейронов). Размеры их варьируют от 10 до 140 мкм. Они имеют вытянутое треугольное тело, вершина которого обращена к поверхности коры. От вершины и боковых поверхностей тела отходят дендриты, заканчивающиеся в различных слоях серого вещества. От основания пирамидных клеток берут начало аксоны, в одних клетках короткие, образующие ветвления в пределах данного участка коры, в других — длинные, поступающие в белое вещество .
Пирамидные клетки различных слоёв коры отличаются размерами и имеют разное функциональное значение. Мелкие клетки представляют собой вставочные нейроны, аксоны которых связывают отдельные участки коры одного полушария (ассоциативные нейроны) или двух полушарий (комиссуральные нейроны). Эти клетки встречаются в разных количествах во всех слоях коры. Особенно богата ими кора головного мозга человека. Аксоны крупных пирамидных нейронов принимают участие в образовании пирамидных путей, проецирующих импульсы в соответствующие центры мозгового ствола и спинного мозга.
Нейроны коры расположены нерезко отграниченными слоями. Каждый слой характеризуется преобладанием какого-либо одного вида клеток. В двигательной зоне коры различают 6 основных слоёв:
Молекулярный (лат. lamina molecularis) Наружный зернистый (лат. lamina granularis externa) Пирамидальных нейронов (лат. lamina pyramidalis) Внутренний зернистый (лат. lamina granularis interna) Ганглионарный (слой клеток Беца) (лат. lamina ganglionaris) Слой мультиформных (полиморфных) клеток (лат. lamina multiformis) Кора полушарий головного мозга также содержит мощный нейроглиальный аппарат, выполняющий трофическую, защитную, опорную и разграничительную функции.
На медиальной и нижней поверхности полушарий сохранились участки старой, древней коры, которые имеют двухслойное и трехслойное строение.
Молекулярный слой Молекулярный слой коры содержит небольшое количество мелких ассоциативных клеток веретеновидной формы. Их аксоны проходят параллельно поверхности мозга в составе тангенциального сплетения нервных волокон молекулярного слоя. Основная масса волокон этого сплетения представлена ветвлениями дендритов нейронов нижележащих слоёв.
Наружный зернистый слой Наружный зернистый слой образован мелкими нейронами диаметром около 10 мкм, имеющими округлую, угловатую и пирамидальную форму, и звёздчатыми нейронами. Дендриты этих клеток поднимаются в молекулярный слой. Аксоны или уходят в белое вещество, или, образуя дуги, также поступают в тангенциальное сплетение волокон молекулярного слоя.
Слой пирамидальных нейронов Является самым широким по сравнению с другиями слоями коры головного мозга. Он особенно хорошо развит в прецентральной извилине. Величина пирамидных клеток последовательно увеличивается в пределах 10-40 мкм от наружной зоны этого слоя к внутренней. От верхушки пирамидной клетки отходит главный дендрит, который располагается в молекулярном слое. Дендриты, берущие начало от боковых поверхностей пирамиды и её основания, имеют незначительную длину и образуют синапсы со смежными клетками этого слоя. Аксон пирамидной клетки всегда отходит от её основания. В мелких клетках он остаётся в пределах коры; аксон же, принадлежащий крупной пирамиде, обычно формирует миелиновое ассоцативное или комиссуральное волокно, идущее в белое вещество.
Внутренний зернистый слой В некоторых полях коры развит очень сильно (например, в зрительной зоне коры). Однако в других участках он может отсутствовать (в прецентральной извилине). Этот слой образован мелкими звёздчатыми нейронами. В его состав входит большое количество горизонтальных волокон .
Ганглионарный слой (Внутренний пирамидный слой;Клетки Беца) Образован крупными пирамидными клетками, причём область прецентральной извилины содержит гигантские клетки, описанные впервые киевским анатомом В. А. Бецем в 1874 году (клетки Беца). Они достигают в высоту 120 и в ширину 80 мкм. В отличие от других пирамидных клеток коры гигантские клетки Беца характеризуются наличием крупных глыбок хроматофильного вещества. Их аксоны образуют главную часть кортико-спинальных и кортико-нуклеарных путей и оканчиваются на мотонейронах мозгового ствола и спинного мозга.
Перед выходом из коры от пирамидного пути отходит множество коллатералей. Аксоны от гигантских клеток Беца дают коллатерали, посылающие тормозящие импульсы в саму кору. Также коллатерали волокон пирамидного пути идут в полосатое тело, красное ядро, ретикулярную формацию, ядра моста и нижних олив. Ядра моста и нижних олив передают сигнал в мозжечок. Таким образом, когда пирамидный путь передаёт сигнал, вызывающий целенаправленное движение, в спинной мозг, одновременно сигналы получают базальные ганглии, ствол мозга и мозжечок. Помимо коллатералей пирамидных путей, существуют волокна, которые идут непосредственно от коры к промежуточным ядрам: хвостатому телу, красному ядру, ядрам ретикулярной формации ствола мозга и др.
Слой мультиморфных клеток Образован нейронами различной, преимущественно веретенообразной формы. Внешняя зона этого слоя содержит более крупные клетки. Нейроны внутренней зоны мельче и лежат на большом расстоянии друг от друга. Аксоны клеток полиморфного слоя уходят в белое вещество в составе эфферентных путей головного мозга. Дендриты достигают молекулярного слоя коры .
Миелоархитектоника Среди нервных волокон коры полушарий головного мозга можно выделить:
ассоциативные волокна — связывают отдельные участки коры одного полушария комиссуральные волокна — соединяют кору двух полушарий проекционные волокна — соединяют кору с ядрами низших отделов центральной нервной системы. Афферентные проекционные волокна заканчиваются в слое пирамидальных нейронов Кроме тангенциального сплетения молекулярного слоя, на уровне внутреннего зернистого и ганглионарного слоёв расположены два тангенциальных слоя миелиновых нервных волокон и коллатералей аксонов клеток коры. Вступая в синаптические связи с нейронами коры, горизонтальные волокна обеспечивают широкое распространение в ней нервного импульса.
Модуль I, II, III, IV, V, VI — слои коры Афферентные волокна 1. кортико-кортикальное волокно 2. таламо-кортикальное волокно 2а. зона распространения специфических таламо-кортикальных волокон 3. пирамидные нейроны 3а. заторможенные пирамидные нейроны 4. тормозные нейроны и их синапсы 4а. клетки с аксональной кисточкой 4б. малые корзинчатые клетки 4в. большие корзинчатые клетки 4г. аксоаксональные нейроны 4д. клетки с двойным букетом дендритов (тормозящие тормозные нейроны) 5. шипиковые звёздчатые клетки, возбуждающие пирамидные нейроны непосредственно и путём стимуляции клеток с двойным букетом дендритов
Исследуя кору больших полушарий головного мозга Сентаготаи и представители его школы установили, что её структурно-функциональной единицей является модуль — вертикальная колонка диаметром около 300 мкм. Модуль организован вокруг кортико-кортикального волокна, представляющего собой аксон пирамидной клетки III слоя (слоя пирамидальных клеток) того же полушария (ассоциативное волокно), либо от пирамидальных клеток противоположного (комиссуральное). В модуль входят два таламо-кортикальных волокна — специфических афферентных волокна, оканчивающихся в IV слое коры на шипиковых звёздчатых нейронах и отходящих от основания (базальных) дендритах пирамидальных нейронов. Каждый модуль, по мнению Сентаготаи разделяется на два микромодуля диаметром менее 100 мкм. Всего в неокортексе человека примерно 3 млн модулей. Аксоны пирамидальных нейронов модуля проецируются на три модуля той же стороны и через мозолистое тело посредством комиссуральных волокон на два модуля противоположного полушария. В отличие от специфических афферентных волокон, оканчивающихся в IV слое коры, кортико-кортикальные волокна образуют окончания во всех слоях коры, и, достигая I слоя, дают горизонтальные ветви, выходящие далеко за пределы модуля.
Помимо специфических (таламо-кортикальных) афферентных волокон, на выходные пирамидальные нейроны возбуждающее влияние оказывают шипиковые звёздчатые нейроны. Различают два типа шипиковых клеток:
шипиковые звёздчатые нейроны фокального типа, образующие множественные синапсы на отходящих от верхушки (апикальных) дендритах пирамидального нейрона шипиковые звёздчатые нейроны диффузного типа, аксоны которых широко ветвятся в IV слое и возбуждают базальные дендриты пирамидальных нейронов. Коллатерали аксонов пирамидных нейронов вызывают диффузное возбуждение соседних пирамид. Тормозная система модуля представлена следующими типами нейронов:
клетки с аксональной кисточкой образуют в I слое множественные тормозные синапсы на горизонтальных ветвях кортико-кортикальных волокон корзинчатые нейроны — тормозные нейроны, образующие тормозящие синапсы на телах практически всех пирамидных клеток. Они подразделяются на малые корзинчатые нейроны, оказывающие тормозящее влияние на пирамидные нейроны II, III и V слоёв модуля, и большие корзинчатые клетки, располагающиеся на периферии модуля и имеющие тенденцию подавлять пирамидные нейроны соседних модулей аксоаксональные нейроны, тормозящие пирамидные нейроны II и III слоёв. Каждая такая клетка образует синапсы на начальных участках аксонов сотен нейронов II и III слоёв. Они тормозят, таким образом, кортико-кортикальные волокна, но не проекционные волокна нейронов V слоя. Система угнетения тормозных нейронов:
клетки с двойным букетом дендритов располагаются во II и III слоях и, угнетая тормозные нейроны, производят вторичное возбуждающее действие на пирамидные нейроны. Ветви их аксонов направлены вверх и вниз и распространяются в узкой колонке (50 мкм). Таким образом, клетка с двойным букетом дендритов растормаживает пирамидные нейроны в микромодуле (в колонке диаметром 50-100 мкм)[5]. Мощный возбуждающий эффект фокальных шипиковых звёздчатых клеток объясняется тем, что они одновременно возбуждают пирамидные нейроны и клетку с двойным букетом дендритов. Таким образом, первые три тормозных нейрона тормозят пирамидные клетки, а клетки с двойным букетом дендритов возбуждают их, угнетая тормозные нейроны.
Однако, также существуют критические и альтернативные концепции, ставящие под сомнение модульную организацию коры больших полушарий и мозжечка. Безусловно, влияние на эти воззрения оказало предсказание в 1985 г. и в дальнейшем открытие в 1992 г. диффузного объёмного нейротрансмиттинга.
Резюме Межнейрональные взаимосвязи нейронов коры больших полушарий головного мозга можно представить следующим образом: входящая (афферентная) информация поступает из таламуса по таламо-кортикальным волокнам, которые заканчиваются на клетках IV (внутреннего зернистого) слоя. Его звёздчатые нейроны оказывают возбуждающее воздействие на пирамидные клетки III (пирамидальных нейронов) и V (ганглионарного) слоёв, а также на клетки с двойным букетом дендритов, которые блокируют тормозные нейроны. Клетки III слоя образуют волокна (ассоциативные и комиссуральные), которые связывают между собой различные отделы коры. Клетки V и VI (мультиморфных клеток) слоёв формируют проекционные волокна, которые уходят в белое вещество и несут информацию другим отделам центральной нервной системы. Во всех слоях коры находятся тормозные нейроны, играющие роль фильтра путём блокирования пирамидных нейронов.
Кора различных отделов характеризуется преимущественным развитием тех или иных её слоёв. Так, в двигательных центрах коры, например в передней центральной извилине, сильно развиты III, V и VI и плохо выражены II и IV слои. Это так называемый агранулярный тип коры. Из этих областей берут начало нисходящие проводящие пути центральной нервной системы. В чувствительных корковых центрах, где заканчиваются афферентные проводники, идущие от органов обоняния, слуха и зрения, слабо развиты слои, содержащие крупные и средние пирамидные клетки , тогда как зернистые слои (II и IV) достигают своего максимального развития. Это гранулярный тип коры.
Цитоархитектонические поля Бродмана Основная статья: Цитоархитектонические поля Бродмана Цитоархитектонические поля Бродмана – отделы коры больших полушарий головного мозга, отличающиеся по своей цитоархитектонике (строению на клеточном уровне). Выделяется 52 цитоархитектонических поля Бродмана.
В 1909 году немецкий невролог Корбиниан Бродманн опубликовал карты цитоархитектонических полей коры больших полушарий головного мозга. Бродман впервые создал карты коры. Впоследствии О. Фогт и Ц. Фогт (1919-1920 гг.) с учётом волоконного строения описали в коре головного мозга 150 миелоархитектонических участков. В Институте мозга АМН СССР И. Н. Филипповым и С. А. Саркисовым были созданы карты коры головного мозга, включающие 47 цитоархитектонических полей[8].
Несмотря на критику , поля Бродмана являются самыми известными и наиболее часто цитируемыми при описании нейрональной организации коры головного мозга и её функций.
Локализация функций в коре Planned section.svg Этот раздел ещё не написан. Согласно замыслу одного из участников Википедии, на этом месте должен располагаться раздел, посвящённый Локализации функций в коре. Вы можете помочь проекту, написав этот раздел. Кора головного мозга функционально состоит из трех зон: сенсорная зона, моторная зона и ассоциативная зона. У человека ассоциативная зона занимает около 75% коры головного мозга, у животных она значительно меньшая. Функция ассоциативной зоны — связывать между собой активность сенсорных и моторных зон. Ассоциативная зона, предполагается, получает и перерабатывает информацию из сенсорной зоны и инициирует целенаправленное осмысленное поведение.
Действия вопреки страху, аффективное, эмоционально насыщенное поведение сопровождаются активацией так называемой подколенной области передней части поясной извилины головного мозга (subgenual anterior cingulate cortex — sgACC). Чем больше страх, тем сильнее активизируется эта область мозга. При этом одновременно подавляляется активность височных долей головного мозга[10].
Примечания ↑ 1 2 3 4 5 М. Г. Привес, Н. К. Лысенков, В. И. Бушкович Анатомия человека. — 11-е. — Санкт-Петербург: «Гиппократ», 1998. — С. 525-530. — 704 с. — 5 000 экз. — ISBN 5-8232-0192-3 ↑ 1 2 3 4 5 М. Р. Сапин, Анатомия человека в 2х томах — М.: Просвещение, 1995. — ISBN 5-09-004385-X ↑ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Р. Д. Синельников, Я. Р. Синельников Атлас анатомии человека. — 2-е. — М.:: «Медицина», 1996. — Т. 4. — С. 29-37. — 320 с. — 10 000 экз. — ISBN 5-225-02723-7 ↑ Х.Фениш Карманный атлас анатомии человека. — Минск:: «Вышэйшая школа», 1996. — С. 316-317. — 464 с. — 20 000 экз. — ISBN 985-06-0114-0 ↑ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Ю.И.Афанасьев, Н.А.Юрина Гистология. — М.: Медицина, 2001. — С. 316-323. — 744 с. — ISBN 5-225-04523-5 ↑ Савельев А. В. Критический анализ функциональной роли модульной самоорганизации мозга // Нейрокомпьютеры: разработка и применение. — Москва: Издательство «Радиотехника», 2008. — № 5-6. — С. 4-17. ↑ Brodmann Korbinian Vergleichende Lokalisationslehre der Grosshirnrinde : in ihren Principien dargestellt auf Grund des Zellenbaues. — Leipzig: Johann Ambrosius Barth Verlag, 1909. ↑ Сапин М. Р., Билич Г. Л. Анатомия человека. — М.:: «Высшая школа», 1989. — С. 417. — 544 с. — 100 000 экз. — ISBN 5-06-001145-3 ↑ Gerhardt von Bonin & Percival Bailey The Neocortex of Macaca Mulatta. — Urbana, Illinois: The University of Illinois Press, 1925. ↑ Ученые выявили области мозга, отвечающие за чувство куража, МОСКВА, 24 июня 2010 — РИА Новости Ссылки Жуков А. Г., Колесников А. А., Савельева-Новосёлова Н. А., Савельев А. В. Устройство для моделирования нейрона неокортекса // патент РФ № 1464181, приоритет от 14.01.1987. — бюллетень Изобретений, 1989. — № 9. Савельев А. В. На пути к общей теории нейросетей. К вопросу о сложности // Нейрокомпьютеры: разработка и применение. — Москва: Издательство «Радиотехника», 2006. — № 4-5. — С. 4-14. Категории: Нейроанатомия Головной мозг